Feeds:
Posts
Comments

Posts Tagged ‘fixed point theorems’

In Part I we discussed some conceptual proofs of the Sylow theorems. Two of those proofs involve reducing the existence of Sylow subgroups to the existence of Sylow subgroups of S_n and GL_n(\mathbb{F}_p) respectively. The goal of this post is to understand the Sylow p-subgroups of GL_n(\mathbb{F}_p) in more detail and see what we can learn from them about Sylow subgroups in general.

(more…)

Read Full Post »

As an undergraduate the proofs I saw of the Sylow theorems seemed very complicated and I was totally unable to remember them. The goal of this post is to explain proofs of the Sylow theorems which I am actually able to remember, several of which use our old friend

The p-group fixed point theorem (PGFPT): If P is a finite p-group and X is a finite set on which P acts, then the subset X^P of fixed points satisfies |X^P| \equiv |X| \bmod p. In particular, if |X| \not \equiv 0 \bmod p then this action has at least one fixed point.

There will be some occasional historical notes taken from Waterhouse’s The Early Proofs of Sylow’s Theorem.

(more…)

Read Full Post »

The goal of this post is to compute the cohomology of the n-torus X = (S^1)^n \cong \mathbb{R}^n/\mathbb{Z}^n in as many ways as I can think of. Below, if no coefficient ring is specified then the coefficient ring is \mathbb{Z} by default. At the end we will interpret this computation in terms of cohomology operations.

(more…)

Read Full Post »

The goal of this post is to collect a list of applications of the following theorem, which is perhaps the simplest example of a fixed point theorem.

Theorem: Let G be a finite p-group acting on a finite set X. Let X^G denote the subset of X consisting of those elements fixed by G. Then |X^G| \equiv |X| \bmod p; in particular, if p \nmid |X| then G has a fixed point.

Although this theorem is an elementary exercise, it has a surprising number of fundamental corollaries.

(more…)

Read Full Post »