Previously we saw that Cantor’s theorem, the halting problem, and Russell’s paradox all employ the same diagonalization argument, which takes the following form. Let be a set and let
be a function. Then we can write down a function such that
. If we curry
to obtain a function
it now follows that there cannot exist such that
, since
.
Currying is a fundamental notion. In mathematics, it is constantly implicitly used to talk about function spaces. In computer science, it is how some programming languages like Haskell describe functions which take multiple arguments: such a function is modeled as taking one argument and returning a function which takes further arguments. In type theory, it reproduces function types. In logic, it reproduces material implication.
Today we will discuss the appropriate categorical setting for understanding currying, namely that of cartesian closed categories. As an application of the formalism, we will prove the Lawvere fixed point theorem, which generalizes the argument behind Cantor’s theorem to cartesian closed categories.