Archive for September, 2013

Previously we saw that Cantor’s theorem, the halting problem, and Russell’s paradox all employ the same diagonalization argument, which takes the following form. Let X be a set and let

\displaystyle f : X \times X \to 2

be a function. Then we can write down a function g : X \to 2 such that g(x) \neq f(x, x). If we curry f to obtain a function

\displaystyle \text{curry}(f) : X \to 2^X

it now follows that there cannot exist x \in X such that \text{curry}(f)(x) = g, since \text{curry}(f)(x)(x) = f(x, x) \neq g(x).

Currying is a fundamental notion. In mathematics, it is constantly implicitly used to talk about function spaces. In computer science, it is how some programming languages like Haskell describe functions which take multiple arguments: such a function is modeled as taking one argument and returning a function which takes further arguments. In type theory, it reproduces function types. In logic, it reproduces material implication.

Today we will discuss the appropriate categorical setting for understanding currying, namely that of cartesian closed categories. As an application of the formalism, we will prove the Lawvere fixed point theorem, which generalizes the argument behind Cantor’s theorem to cartesian closed categories.


Read Full Post »

Often in mathematics we define constructions outputting objects which a priori have a certain amount of structure but which end up having more structure than is immediately obvious. For example:

  • Given a Lie group G, its tangent space T_e(G) at the identity is a priori a vector space, but it ends up having the structure of a Lie algebra.
  • Given a space X, its cohomology H^{\bullet}(X, \mathbb{Z}) is a priori a graded abelian group, but it ends up having the structure of a graded ring.
  • Given a space X, its cohomology H^{\bullet}(X, \mathbb{F}_p) over \mathbb{F}_p is a priori a graded abelian group (or a graded ring, once you make the above discovery), but it ends up having the structure of a module over the mod-p Steenrod algebra.

The following question suggests itself: given a construction which we believe to output objects having a certain amount of structure, can we show that in some sense there is no extra structure to be found? For example, can we rule out the possibility that the tangent space to the identity of a Lie group has some mysterious natural trilinear operation that cannot be built out of the Lie bracket?

In this post we will answer this question for the homotopy groups \pi_n(X) of a space: that is, we will show that, in a suitable sense, each individual homotopy group \pi_n(X) is “only a group” and does not carry any additional structure. (This is not true about the collection of homotopy groups considered together: there are additional operations here like the Whitehead product.)


Read Full Post »