The **Hecke algebra** attached to a Coxeter system is a deformation of the group algebra of defined as follows. Take the free -module with basis , and impose the multiplicative relations

if , and

otherwise. (For now, ignore the square root of .) Humphreys proves that these relations describe a unique associative algebra structure on with as the identity, but the proof is somewhat unenlightening, so I will skip it. (Actually, the only purpose of this post is to motivate the definition of the Kazhdan-Lusztig polynomials, so I’ll be referencing the proofs in Humphreys rather than giving them.)

The motivation behind this definition is a somewhat long story. When is the Weyl group of an algebraic group with Borel subgroup , the above relations describe the algebra of functions on which are bi-invariant with respect to the left and right actions of under a convolution product. The representation theory of the Hecke algebra is an important tool in understanding the representation theory of the group , and more general Hecke algebras play a similar role; see, for example MO question #4547 and this Secret Blogging Seminar post. For example, replacing and with and gives the Hecke operators in the theory of modular forms.