Feeds:
Posts
Comments

Archive for April, 2014

Let C be a (locally small) category. Recall that any such category naturally admits a Yoneda embedding

\displaystyle Y : C \ni c \mapsto \text{Hom}(-, c) \in \widehat{C}

into its presheaf category \widehat{C} = [C^{op}, \text{Set}] (where we use [C, D] to denote the category of functors C \to D). The Yoneda lemma asserts in particular that Y is full and faithful, which justifies calling it an embedding.

When C is in addition assumed to be small, the Yoneda embedding has the following elegant universal property.

Theorem: The Yoneda embedding Y : C \to \widehat{C} exhibits \widehat{C} as the free cocompletion of C in the sense that for any cocomplete category D, the restriction functor

\displaystyle Y^{\ast} : [\widehat{C}, D]_{\text{cocont}} \to [C, D]

from the category of cocontinuous functors \widehat{C} \to D to the category of functors C \to D is an equivalence. In particular, any functor C \to D extends (uniquely, up to natural isomorphism) to a cocontinuous functor \widehat{C} \to D, and all cocontinuous functors \widehat{C} \to D arise this way (up to natural isomorphism).

Colimits should be thought of as a general notion of gluing, so the above should be understood as the claim that \widehat{C} is the category obtained by “freely gluing together” the objects of C in a way dictated by the morphisms. This intuition is important when trying to understand the definition of, among other things, a simplicial set. A simplicial set is by definition a presheaf on a certain category, the simplex category, and the universal property above says that this means simplicial sets are obtained by “freely gluing together” simplices.

In this post we’ll content ourselves with meandering towards a proof of the above result. In a subsequent post we’ll give a sampling of applications.

(more…)

Read Full Post »