Today we will give four proofs of the classification of the (finite-dimensional complex continuous) irreducible representations of (which you’ll recall we assumed way back in this previous post). As a first step, it turns out that the finite-dimensional representation theory of compact groups looks a lot like the finite-dimensional representation theory of finite groups, and this will be a major boon to three of the proofs. The last proof will instead proceed by classifying irreducible representations of the Lie algebra
.
At the end of the post we’ll briefly describe what we can conclude from all this about electrons orbiting a hydrogen atom.