Hilbert spaces are a particularly nice class of Banach spaces. They axiomatize ideas from Euclidean geometry such as orthogonality, projection, and the Pythagorean theorem, but the ideas apply to many infinite-dimensional spaces of functions of interest to various branches of mathematics. Hilbert spaces are also fundamental to quantum mechanics, as vectors in Hilbert spaces (up to phase) describe (pure) states of quantum systems.

Today we’ll develop and discuss some of the basic theory of Hilbert spaces. As with the theory of Banach spaces, there are (at least) two types of morphisms we might want to talk about (unitary operators and bounded operators), and we will discuss an elegant formalism that allows us to talk about both. Things written by John Baez will be cited excessively.