Feeds:
Posts

## Meditation on the Sylow theorems II

In Part I we discussed some conceptual proofs of the Sylow theorems. Two of those proofs involve reducing the existence of Sylow subgroups to the existence of Sylow subgroups of $S_n$ and $GL_n(\mathbb{F}_p)$ respectively. The goal of this post is to understand the Sylow $p$-subgroups of $GL_n(\mathbb{F}_p)$ in more detail and see what we can learn from them about Sylow subgroups in general.

## Meditation on the Sylow theorems I

As an undergraduate the proofs I saw of the Sylow theorems seemed very complicated and I was totally unable to remember them. The goal of this post is to explain proofs of the Sylow theorems which I am actually able to remember, several of which use our old friend

The $p$-group fixed point theorem (PGFPT): If $P$ is a finite $p$-group and $X$ is a finite set on which $P$ acts, then the subset $X^P$ of fixed points satisfies $|X^P| \equiv |X| \bmod p$. In particular, if $|X| \not \equiv 0 \bmod p$ then this action has at least one fixed point.

There will be some occasional historical notes taken from Waterhouse’s The Early Proofs of Sylow’s Theorem.

## The representation theory of the additive group scheme

In this post we’ll describe the representation theory of the additive group scheme $\mathbb{G}_a$ over a field $k$. The answer turns out to depend dramatically on whether or not $k$ has characteristic zero.

## Projective representations give categorical representations

Today we’ll resolve half the puzzle of why the cohomology group $H^2(BG, k^{\times})$ appears both when classifying projective representations of a group $G$ over a field $k$ and when classifying $k$-linear actions of $G$ on the category $\text{Mod}(k)$ of $k$-vector spaces by describing a functor from the former to the latter.

(There is a second half that goes in the other direction.)

## Hecke operators are also relative positions

Continuing yesterday’s story about relative positions, let $G$ be a finite group and let $X$ and $Y$ be finite $G$-sets. Yesterday we showed that $G$-orbits on $X \times Y$ can be thought of as “atomic relative positions” of “$X$-figures” and “$Y$-figures” in some geometry with symmetry group $G$, and further that if $X \cong G/H$ and $Y \cong G/K$ are transitive $G$-sets then these can be identified with double cosets $H \backslash G / K$.

Representation theory provides another interpretation of $G$-orbits on $X \times Y$ as follows. First, if $\mathbb{C}[X]$ is any permutation representation, then the $G$-fixed points $\mathbb{C}[X]^G$ have a natural basis given by summing over $G$-orbits. (This is a mild categorification of Burnside’s lemma.) Next, consider the representations $\mathbb{C}[X], \mathbb{C}[Y]$. Because $\mathbb{C}[X]$ is self-dual, we have

$\displaystyle \text{Hom}_G(\mathbb{C}[X], \mathbb{C}[Y]) \cong (\mathbb{C}[X] \otimes \mathbb{C}[Y])^G \cong \mathbb{C}[X \times Y]^G$

and hence $\text{Hom}_G(\mathbb{C}[X], \mathbb{C}[Y])$ has a natural basis given by summing over $G$-orbits of the action on $X \times Y$.

Definition: The $G$-morphism $\mathbb{C}[X] \to \mathbb{C}[Y]$ associated to a $G$-orbit of $X \times Y$ via the above isomorphisms is the Hecke operator associated to the $G$-orbit (relative position, double coset).

Below the fold we’ll write down some details about how this works and see how we can use the idea that $G$-morphisms between permutations have a basis given by Hecke operators to work out, quickly and cleanly, how some permutation representations decompose into irreducibles. At the end we’ll state another puzzle.

## The p-group fixed point theorem

The goal of this post is to collect a list of applications of the following theorem, which is perhaps the simplest example of a fixed point theorem.

Theorem: Let $G$ be a finite $p$-group acting on a finite set $X$. Let $X^G$ denote the subset of $X$ consisting of those elements fixed by $G$. Then $|X^G| \equiv |X| \bmod p$; in particular, if $p \nmid |X|$ then $G$ has a fixed point.

Although this theorem is an elementary exercise, it has a surprising number of fundamental corollaries.

## Connected objects and a reconstruction theorem

A common theme in mathematics is to replace the study of an object with the study of some category that can be built from that object. For example, we can

• replace the study of a group $G$ with the study of its category $G\text{-Rep}$ of linear representations,
• replace the study of a ring $R$ with the study of its category $R\text{-Mod}$ of $R$-modules,
• replace the study of a topological space $X$ with the study of its category $\text{Sh}(X)$ of sheaves,

and so forth. A general question to ask about this setup is whether or to what extent we can recover the original object from the category. For example, if $G$ is a finite group, then as a category, the only data that can be recovered from $G\text{-Rep}$ is the number of conjugacy classes of $G$, which is not much information about $G$. We get considerably more data if we also have the monoidal structure on $G\text{-Rep}$, which gives us the character table of $G$ (but contains a little more data than that, e.g. in the associators), but this is still not a complete invariant of $G$. It turns out that to recover $G$ we need the symmetric monoidal structure on $G\text{-Rep}$; this is a simple form of Tannaka reconstruction.

Today we will prove an even simpler reconstruction theorem.

Theorem: A group $G$ can be recovered from its category $G\text{-Set}$ of $G$-sets.

## Groupoid cardinality

Suitably nice groupoids have a numerical invariant attached to them called groupoid cardinality. Groupoid cardinality is closely related to Euler characteristic and can be thought of as providing a notion of integration on groupoids.

There are various situations in mathematics where computing the size of a set is difficult but where that set has a natural groupoid structure and computing its groupoid cardinality turns out to be easier and give a nicer answer. In such situations the groupoid cardinality is also known as “mass,” e.g. in the Smith-Minkowski-Siegel mass formula for lattices. There are related situations in mathematics where one needs to describe a reasonable probability distribution on some class of objects and groupoid cardinality turns out to give the correct such distribution, e.g. the Cohen-Lenstra heuristics for class groups. We will not discuss these situations, but they should be strong evidence that groupoid cardinality is a natural invariant to consider.

## Groupoids

My current top candidate for a mathematical concept that should be and is not (as far as I can tell) consistently taught at the advanced undergraduate / beginning graduate level is the notion of a groupoid. Today’s post is a very brief introduction to groupoids together with some suggestions for further reading.