Feeds:
Posts
Comments

Archive for May, 2016

Higher linear algebra

Let k be a commutative ring. A popular thing to do on this blog is to think about the Morita 2-category \text{Mor}(k) of algebras, bimodules, and bimodule homomorphisms over k, but it might be unclear exactly what we’re doing when we do this. What are we studying when we study the Morita 2-category?

The answer is that we can think of the Morita 2-category as a 2-category of module categories over the symmetric monoidal category \text{Mod}(k) of k-modules, equipped with the usual tensor product \otimes_k over k. By the Eilenberg-Watts theorem, the Morita 2-category is equivalently the 2-category whose

  • objects are the categories \text{Mod}(A), where A is a k-algebra,
  • morphisms are cocontinuous k-linear functors \text{Mod}(A) \to \text{Mod}(B), and
  • 2-morphisms are natural transformations.

An equivalent way to describe the morphisms is that they are “\text{Mod}(k)-linear” in that they respect the natural action of \text{Mod}(k) on \text{Mod}(A) given by

\displaystyle \text{Mod}(k) \times \text{Mod}(A) \ni (V, M) \mapsto V \otimes_k M \in \text{Mod}(A).

This action comes from taking the adjoint of the enrichment of \text{Mod}(A) over \text{Mod}(k), which gives a tensoring of \text{Mod}(A) over \text{Mod}(k). Since the two are related by an adjunction in this way, a functor respects one iff it respects the other.

So Morita theory can be thought of as a categorified version of module theory, where we study modules over \text{Mod}(k) instead of over k. In the simplest cases, we can think of Morita theory as a categorified version of linear algebra, and in this post we’ll flesh out this analogy further.

(more…)

Read Full Post »

I was staring at a bonfire on a beach the other day and realized that I didn’t understand anything about fire and how it works. (For example: what determines its color?) So I looked up some stuff, and here’s what I learned.

(more…)

Read Full Post »

In the previous post we described a fairly straightforward argument, using generating functions and the saddle-point bound, for giving an upper bound

\displaystyle p(n) \le \exp \left( \pi \sqrt{ \frac{2n}{3} } \right)

on the partition function p(n). In this post I’d like to record an elementary argument, making no use of generating functions, giving a lower bound of the form \exp C \sqrt{n} for some C > 0, which might help explain intuitively why this exponential-of-a-square-root rate of growth makes sense.

The starting point is to think of a partition of n as a Young diagram of size n, or equivalently (in French coordinates) as a lattice path from somewhere on the y-axis to somewhere on the x-axis, which only steps down or to the right, such that the area under the path is n. Heuristically, if the path takes a total of L steps then there are about 2^L such paths, and if the area under the path is n then the length of the path should be about O(\sqrt{n}), so this already goes a long way towards explaining the exponential-of-a-square-root behavior.

(more…)

Read Full Post »

(Part I of this post is here)

Let p(n) denote the partition function, which describes the number of ways to write n as a sum of positive integers, ignoring order. In 1918 Hardy and Ramanujan proved that p(n) is given asymptotically by

\displaystyle p(n) \approx \frac{1}{4n \sqrt{3}} \exp \left( \pi \sqrt{ \frac{2n}{3} } \right).

This is a major plot point in the new Ramanujan movie, where Ramanujan conjectures this result and MacMahon challenges him by agreeing to compute p(200) and comparing it to what this approximation gives. In this post I’d like to describe how one might go about conjecturing this result up to a multiplicative constant; proving it is much harder.

(more…)

Read Full Post »

I went to see The Man Who Knew Infinity yesterday. I have nothing much to say about the movie as a movie that wasn’t already said in Scott Aaronson‘s review, except that I learned a few fun facts during the Q&A session with writer/director Matthew Brown afterwards. Namely, it’s a little surprising the movie was able to get high-profile stars like Dev Patel and Jeremy Irons on board given that it was made on a relatively low budget. Apparently, Dev Patel signed on because he really wanted to popularize the story of Ramanujan, and Jeremy Irons signed on because he was hooked after being given a copy of Hardy’s A Mathematician’s Apology.

(Disclaimer: this blog does not endorse any of the opinions Hardy expresses in the Apology, e.g. the one about mathematics being a young man’s game, the one about pure math being better than applied math, or the one about exposition being an unfit activity for a real mathematician. The opinion of this blog is that the Apology should be read mostly for insight into Hardy’s psychology rather than for guidance about how to do mathematics.)

Anyway, since this is a movie about Ramanujan, let’s talk about some of the math that appears in the movie. It’s what he would have wanted, probably.

(more…)

Read Full Post »