Yesterday we gave a brief and abstract description of Galois descent, the punchline of which was that Galois descent could abstractly be described as a natural equivalence

\displaystyle C(k) \cong C(L)^G

where f : k \to L is a Galois extension, G = \text{Aut}(L) is the Galois group of L (thinking of L as an object of the category of field extensions of k at all times), C(k) is a category of “objects over k,” and C(l) is a category of “objects over L.”

In fact this description is probably only correct if k \to L is a finite Galois extension; if k \to L is infinite it should probably be modified by requiring that every function of G that occurs (e.g. in the definition of homotopy fixed points) is continuous with respect to the natural profinite topology on G. To avoid this difficulty we’ll stick to the case that k \to L is a finite extension.

Today we’ll recover from this abstract description the somewhat more concrete punchline that k-forms c_k \in C(k) of an object c_L \in C(L) can be classified by Galois cohomology H^1(BG, \text{Aut}(c_L)), and we’ll give some examples.

Continue Reading »

Stating Galois descent

After a relaxing and enjoyable break, we’re finally in a position to state what it means for structures to satisfy Galois descent.

Fix a field k. The gadgets we want to study assign to each separable extension k \to L a category C(L) of “objects over L,” to each morphism f : L_1 \to L_2 of extensions an “extension of scalars” functor f_{\ast} : C(L_1) \to C(L_2), and to each composable pair L_1 \xrightarrow{f} L_2 \xrightarrow{g} L_3 of morphisms of extensions a natural isomorphism

\displaystyle \eta(f, g) : f_{\ast} g_{\ast} \cong (fg)_{\ast}

of functors C(L_1) \to C(L_3) (where again we’re taking compositions in diagrammatic order) satisfying the usual cocycle condition that the two natural isomorphisms f_{\ast} g_{\ast} h_{\ast} \cong (fgh)_{\ast} we can write down from this data agree. We’ll also want unit isomorphisms \varepsilon : \text{id}_{C(L)} \cong (\text{id}_L)_{\ast} satisfying the same compatibility as before. This is just spelling out the definition of a 2-functor from the category of separable extensions of k to the 2-category \text{Cat}, and in particular each C(L) naturally acquires an action of \text{Aut}(L) (where we mean automorphisms of extensions of k, hence if L is Galois this is the Galois group) in precisely the sense we described earlier.

We’ll call such an object a Galois prestack (of categories, over k) for short. The basic example is the Galois prestack of vector spaces \text{Mod}(-), which sends an extension L to the category \text{Mod}(L) of L-vector spaces and sends a morphism f : L_1 \to L_2 to the extension of scalars functor

\displaystyle \text{Mod}(L_1) \ni V \mapsto V \otimes_{L_1} L_2 \in \text{Mod}(L_2).

Every example we consider will in some sense be an elaboration on this example in that it will ultimately be built out of vector spaces with extra structure, e.g. the Galois prestacks of commutative algebras, associative algebras, Lie algebras, and even schemes. In these examples, fields are not really the natural level of generality, and to make contact with algebraic geometry we should replace them with commutative rings, but for now we’ll ignore this.

In order to state the definition, we need to know that if f : k \to L is an extension, then the functor f_{\ast} : C(k) \to C(L) naturally factors through the category C(L)^G of homotopy fixed points for the action of G = \text{Aut}(L) on C(L). We’ll elaborate on why this is in a moment.

Definition: A Galois prestack satisfies Galois descent, or is a Galois stack, if for every Galois extension k \to L the natural functor C(k) \to C(L)^G (where G = \text{Aut}(L) = \text{Gal}(L/k)) is an equivalence of categories.

In words, this condition says that the category of objects over k is equivalent to the category of objects over L equipped with homotopy fixed point structure for the action of the Galois group (or Galois descent data).

(Edit, 11/18/15:) This definition is slightly incorrect in the case of infinite Galois extensions; see the next post and its comments for some discussion.

Continue Reading »

Two weeks ago we proved the following formula. Let G be a finitely generated group and let a_n be the number of subgroups of G of index n. Then

\displaystyle \sum_{n \ge 0} \frac{|\text{Hom}(G, S_n)|}{n!} z^n = \exp \left( \sum_{n \ge 1} \frac{a_n}{n} z^n \right).

This identity reflects, in a way we made precise in the previous post, the decomposition of a finite G-set (the terms on the LHS) into a disjoint union of transitive G-sets (the terms on the RHS).

Noam Zeilberger commented on the previous post that he had seen results like this for more specific groups in the literature; in particular, Samuel Vidal describes a version of this analysis for G = \Gamma = PSL_2(\mathbb{Z}), the modular group. In this post we’ll use the above formula to compute the number of subgroups of index n in \Gamma using a computer algebra system that can manipulate power series. We’ll also say something about how to visualize these subgroups.

Continue Reading »

Yesterday we described how a (finite-dimensional) projective representation \rho : G \to PGL_n(k) of a group G functorially gives rise to a k-linear action of G on \text{Mod}(M_n(k)) \cong \text{Mod}(k) such that the Schur class s(\rho) \in H^2(BG, k^{\times}) classifies this action.

Today we’ll go in the other direction. Given an action of G on \text{Mod}(k) explicitly described by a 2-cocycle \eta \in Z^2(BG, k^{\times}), we’ll recover the category of \eta-projective representations, or equivalently the category of modules over the twisted group algebra k \rtimes_{\eta} G, by taking the homotopy fixed points of this action. We’ll end with another puzzle.

Continue Reading »

Today we’ll resolve half the puzzle of why the cohomology group H^2(BG, k^{\times}) appears both when classifying projective representations of a group G over a field k and when classifying k-linear actions of G on the category \text{Mod}(k) of k-vector spaces by describing a functor from the former to the latter.

(There is a second half that goes in the other direction.)

Continue Reading »

Three days ago we stated the following puzzle: we can compute that isomorphism classes of k-linear actions of a group G on the category C = \text{Mod}(k) of vector spaces over a field k correspond to elements of the cohomology group

\displaystyle H^2(BG, k^{\times}).

This is the same group that appears in the classification of projective representations G \to PGL(V) of G over k, and we asked whether this was a coincidence.

Before answering the puzzle, in this post we’ll provide some relevant background information on projective representations.

Continue Reading »

Previously we described what it means for a group G to act on a category C (although we needed to slightly correct our initial definition). Today, as the next step in our attempt to understand Galois descent, we’ll describe what the fixed points of such a group action are.

John Baez likes to describe (vertical) categorification as replacing equalities with isomorphisms, which we saw on full display in the previous post: we replaced the equality F(g) F(h) = F(gh) with isomorphisms \eta(g, h) : F(g) F(h) \cong F(gh), and as a result we found 2-cocycles lurking in this story.

I prefer to describe categorification as replacing properties with structures, in the nLab sense. That is, the real import of what we just did is to replace the property (of a function between groups, say) that F(g) F(h) = F(gh) with the structure of a family of isomorphisms between F(g) F(h) and F(gh). The use of the term “structure” emphasizes, as we also saw in the previous post, that unlike properties, structures need not be unique.

Accordingly, it’s not surprising that being a fixed point of a group action on a category is also a structure and not a property. Suppose F : G \to \text{Aut}(C) is a group action as in the previous post, and c \in C is an object. The structure of a fixed point, or more precisely a homotopy fixed point, is the data of a family of isomorphisms

\displaystyle \alpha(g) : c \cong F(g) c

which satisfy the compatibility condition that the two composites

\displaystyle c \xrightarrow{\alpha(g)} F(g) c \xrightarrow{F(g)(\alpha(h))} F(g) F(h) c \xrightarrow{\eta(g, h)(c)} F(gh) c


\displaystyle c \xrightarrow{\alpha(gh)} F(gh) c

are equal, as well as the unit condition that

\displaystyle \alpha(e) = \varepsilon(c) : c \to F(e) c

where \varepsilon is the unit isomorphism \text{id}_C \cong F(e). This is, in a sense we’ll make precise below, a 1-cocycle condition, but this time with nontrivial (local) coefficients.

Curiously, when the action F is trivial (meaning both that F(g) = \text{id}_C and that \eta(g, h) = e \in Z(C)^{\times}), this reduces to the definition of a group action of G on c \in C in the usual sense. In general, we can think of homotopy fixed point structure as a “twisted” version of a group action on c \in C where the twist is provided by the group action on C.

Continue Reading »


Get every new post delivered to your Inbox.

Join 416 other followers