Previously we suggested that if we think of commutative algebras as secretly being functions on some sort of spaces, we should correspondingly think of cocommutative coalgebras as secretly being distributions on some sort of spaces. In this post we’ll describe what these spaces are in the language of algebraic geometry.

Let be a cocommutative coalgebra over a commutative ring . If we want to make sense of as defining an algebro-geometric object, it needs to have a functor of points on commutative -algebras. Here it is:

.

In words, the functor of points of a cocommutative coalgebra sends a commutative -algebra to the set of setlike elements of . In the rest of this post we’ll work through some examples.

**Sets**

Recall that if is a set then is a cocommutative coalgebra with comultiplication coming from the diagonal . More explicitly, the comultiplication is determined by the condition that for all .

The functor of points of this coalgebra sends a commutative -algebra to the set of setlike elements of , and as we computed before, these are precisely the elements of the form where

and , or equivalently is a complete orthogonal set of idempotents in . Together, the determine a direct product decomposition

which geometrically corresponds to a decomposition of into disjoint components . As mentioned previously, the data of such a decomposition is equivalent to the data of a continuous function from the Pierce spectrum to .

In other words, consists of “locally constant functions from to .”

We can also equip with a group structure, and then , with the usual Hopf algebra structure, has a functor of points sending a commutative -algebra to the group of continuous functions from to , with pointwise product.

**Finite-dimensional algebras**

Now we restrict to the case that is a field.

Let be a finite-dimensional commutative -algebra. Then the linear dual acquires a natural coalgebra structure given by dualizing the algebra structure on . (We don’t need commutativity to say this.) More explicitly, if is an element of , then the comultiplication is

and the counit is

.

On the other hand,

.

We conclude the following.

**Lemma:** A linear functional is setlike if and only if for all and ; in other words, if and only if is a morphism of -algebras.

More generally, because is a finite-dimensional -vector space, if is any commutative -algebra then the natural map

is an isomorphism. We can check that it’s even an isomorphism of coalgebras, and exactly the same computation as above shows the following.

**Corollary:** An element of is setlike if and only if the corresponding element of is a morphism of -algebras.

Hence the functor of points of as a coalgebra is precisely the functor of points of as an algebra: setlike elements of correspond to morphisms of affine schemes over .

The dual map induces an equivalence of categories between finite-dimensional commutative algebras and finite-dimensional cocommutative coalgebras over , so we can learn something about the latter by learning something about the former. Every finite-dimensional commutative algebra over a field is in particular Artinian, and so factors as a finite product of Artinian local rings. The nilradical of such a ring coincides with its Jacobson radical, and the quotient is a finite-dimensional commutative semisimple -algebra, hence factors as a finite product of finite field extensions of .

Hence, up to taking finite extensions, looks like a finite set of points together with some “nilpotent fuzz.” looks like functions on this and looks like distributions; both are equally sensitive to the “nilpotent fuzz,” as we saw previously in the special case of primitive elements.

**Infinite-dimensional algebras**

Again let be a field. Let be a commutative -algebra, not necessarily finite-dimensional. Then it is no longer true that we can put a coalgebra structure on : when we try dualizing the multiplication, the map goes in the wrong direction to get a comultiplication.

Intuitively, the problem is that because we’re using the algebraic tensor product to define coalgebras, the comultiplication can only output a sum of finitely many tensors, and so has trouble dealing with distributions that are not “compactly supported.”

However, it is possible to rescue this construction as follows. If is a commutative -algebra, define its **finite dual**

to consist of all linear functionals factoring through a finite quotient of (as a -algebra). Geometrically, these are the distributions with “finite support,” and they do in fact have a comultiplication, as follows. If factors through a finite quotient , then

factors through

and the quotient map dualizes to a map , giving us an element of coming from , and hence giving an element of . This is our comultiplication. The counit is as usual; this poses no problems.

The result we showed in the finite-dimensional case above shows the following here.

**Theorem:** Let be a commutative -algebra and let be its finite dual. Then the setlike elements of can naturally be identified with the -algebra homomorphisms which factor through a finite quotient of .

Geometrically, this says that the functor of points of sends an affine scheme to maps from to the spectrum of the **profinite completion **

of . In other words, itself is the coalgebra of distributions on the profinite completion.

*Example.* Let , so that is the affine line. The distributions on the affine line with finite support, or equivalently the profinite completion of , can be very explicitly classified. By the Chinese remainder theorem, the finite quotients of take the form

where the are irreducible polynomials over . This is a finite product, hence a finite direct sum, of vector spaces, and so any linear functional on it breaks up as a direct sum of linear functionals on each piece, so we can restrict attention to linear functionals on (distributions “supported on “) without loss of generality.

In the simplest case, is a linear polynomial . Then the linear dual of has a basis consisting of taking each of the first terms of the Taylor series expansion of a polynomial in centered at : these are (up to the issue of dividing by various factors if has positive characteristic) the derivatives of the Dirac delta at .

In the general case we can understand what’s happening using Galois descent. After passing to a suitable field extension of , namely the splitting field of , the quotient breaks up further into linear factors. In the case that is Galois, linear functionals on can be interpreted as -invariant distributions on . Geometrically we should think of a finite set of “fuzzy” points acted on by the Galois group; examples of Galois-invariant distributions on this include the sum of Dirac deltas at each point, or the sum of derivatives of Dirac deltas at each point. If isn’t Galois (meaning that is inseparable), there is actually extra “fuzziness” that could be hidden over and only becomes visible over .

*Subexample.* Let and consider the quotient of . After passing to the Galois extension , this quotient becomes , and it’s clear that the dual space has a natural basis given by two Dirac deltas, one at and one at . The corresponding linear functionals are just evaluation at these two points.

Unfortunately, these Dirac deltas don’t directly make sense over . Instead, there are two Galois-invariant linear combinations that do: we can take

which, up to a factor of , takes the real part of , and

which, again up to a factor of , takes the imaginary part.

**Cartier duality**

We mostly restricted to the case of a field above because over a field duality behaves in the following very nice way.

**Theorem:** The functor is a contravariant equivalence of symmetric monoidal categories between the symmetric monoidal category of finite-dimensional -vector spaces and itself.

Because this equivalence is symmetric monoidal, it induces various further equivalences.

**Corollary:** The functor is a contravariant equivalence of categories between finite-dimensional -algebras and finite-dimensional -coalgebras, and between finite-dimensional commutative -algebras and finite-dimensional cocommutative -coalgebras.

These remain symmetric monoidal equivalences if we equip everything with the usual tensor product (which for commutative algebras is the coproduct and for cocommutative coalgebras is the product, so in this case we get that the equivalence is symmetric monoidal for free). We can even ask for both an algebra and a coalgebra structure at once, which gives us this.

**Corollary (Cartier duality):** The functor is a contravariant equivalence of categories between finite-dimensional commutative and cocommutative Hopf algebras over and itself.

Finite-dimensional commutative and cocommutative Hopf algebras over are the analogues of finite abelian groups in the world of algebraic geometry over : more precisely, they are finite (in the sense that they are Spec of a finite-dimensional algebra) commutative (because “abelian” means something else in algebraic geometry) group schemes (meaning Spec of a commutative Hopf algebra).

*Example.* Suppose is a finite abelian group, and is its group algebra, regarded as a Hopf algebra in the usual way (so cocommutative for general reasons, and commutative because is abelian). Then the Cartier dual of is the function algebra , regarded as a Hopf algebra in the usual way (commutative for general reasons, and cocommutative because is abelian).

*Subexample.* If is the cyclic group of order , then , as a group scheme, has functor of points

sending a commutative -algebra to the group of roots of unity in . This group scheme has its own name in algebraic geometry: it’s called . On the other hand, its Cartier dual is the “constant” group scheme with value : it has functor of points

sending a commutative -algebra to, as above, the group of locally constant functions from to . This is the same functor of points we get if we think about as a coalgebra, and its name is just .

Cartier duality can be described as switching between two possible functors of points for a finite-dimensional commutative and cocommutative Hopf algebra as above: one based on thinking of as a group object in finite schemes, and one based on thinking of itself as a group object in finite-dimensional cocommutative coalgebras. In the second description, the functor of points

sends a commutative -algebra to the group (really a group now, since we are in a Hopf algebra) of setlike elements of .

As it turns out, it’s possible to give a description of what this functor is doing without explicitly thinking about coalgebras or Cartier duality. Namely, we saw above that the coalgebra of distributions on a point represents the setlike elements functor on coalgebras. We can ask what represents the setlike elements functor on Hopf algebras, and it’s not hard to see that the answer is the Hopf algebra whose underlying algebra is

where the comultiplication is , the counit is , and the antipode is . This Hopf algebra is commutative, and thinking of it as a group scheme, it is a very famous one, the **multiplicative group scheme** , whose functor of points

sends a commutative -algebra to its group of units. Morphisms of Hopf algebras correspond to setlike elements of , and if is commutative these in addition correspond to morphisms of affine group schemes. A morphism from an affine group scheme to the multiplicative group is called a **character**: it is the correct notion of a -dimensional representation in the world of group schemes.

Cartier duality can then be interpreted as follows: if is a finite commutative group scheme, then “characters of ” forms another finite commutative group scheme, whose functor of points

sends a commutative -algebra to the group (under pointwise multiplication) of characters of the base change . But we saw earlier that this is nothing more than the set of setlike elements of , or equivalently the set of homomorphisms , and so this is precisely the functor of points of the Cartier dual as previously defined.

Once Cartier duality is described in terms of characters, it seems a little more suprising: since the dual of the dual of a finite-dimensional vector space is just again, we conclude that taking characters of the characters of a finite commutative group scheme gets us the same group scheme again. This should be compared to Pontryagin duality for finite abelian groups, which says the same thing, where “characters” means homomorphisms , and which can be interpreted as Cartier duality for constant group schemes over .

## Leave a Reply