Mathematicians are very fond of thinking about algebras. In particular, it’s common to think of commutative algebras as consisting of functions of some sort on spaces of some sort.

Less commonly, mathematicians sometimes think about coalgebras. In general it seems that mathematicians find these harder to think about, although it’s sometimes unavoidable, e.g. when discussing Hopf algebras. The goal of this post is to describe how to begin thinking about cocommutative coalgebras as consisting of distributions of some sort on spaces of some sort.

**Functions vs. distributions**

Distributions are typically defined as being duals (spaces of continuous linear functionals) to topological vector spaces of functions. Loosely speaking, a distribution is something you can integrate a class of functions against; it’s a kind of generalized measure.

For example, the dual of the space of continuous functions on a compact Hausdorff space (with the sup norm topology) is a space of (signed) Radon measures on . A class of examples closer to the examples we’ll be considering, although it involves more technicalities than we’ll need, is the dual of the space of smooth functions on a smooth manifold (with the Fréchet topology), which can be thought of as “distributions with compact support” on .

The simplest examples of distributions are the **Dirac delta** distributions, definable in great generality: as linear functionals on spaces of functions they are precisely the evaluation functionals

.

When we take duals to spaces of smooth functions, as opposed to continuous functions, we get more interesting distributions “supported at a point” given by taking derivatives. For example, on , at every point there are linear functionals on given by

.

These distributions are named using derivative notation because they are the distributional derivatives of .

The two most important things to keep in mind about the difference between functions and distributions is the following.

- Functions pull back, while distributions push forward.
- Functions form commutative algebras, while distributions form cocommutative coalgebras.

These points are closely related: the multiplication on functions resp. the comultiplication on functions, can be described using pullback resp. pushforward along the diagonal map

.

Namely, because we can multiply functions on by functions on to get functions on , for any reasonable notion of functions we get a dual map

giving the multiplication on functions.

The situation for distributions is similar but less straightforward: if is any reasonable notion of distributions we get a map

To get a comultiplication from this we’d like for there to be an isomorphism, or at least a map, from to . Unfortunately, the map that exists usually goes in the other direction, and usually will not be an isomorphism unless is some kind of completed tensor product.

Nevertheless, in some examples, and/or with the right modified notion of tensor product, the required maps do exist and we do get a comultiplication on distributions.

In addition to comultiplication, coalgebras also need a counit. In the case of distributions on spaces this counit comes from pushing forward along the unique map , getting a map

which, if we think of distributions as generalized measures, computes the “total measure” of a measure.

**The diagonal**

The appearance of the diagonal map above can be put into a more abstract context. Recall that in any category with finite products, every object is canonically a cocommutative comonoid in a unique way, via the diagonal map

.

A typical example for us will be , and in general we’ll want to think of as a category of “spaces.” We can get both commutative monoids and cocommutative comonoids out of diagonal maps as follows.

If is a contravariant functor out of (describing a notion of “functions”) to a symmetric monoidal category (typically something like ) which is lax symmetric monoidal in the sense that it is equipped with natural transformations

compatible with symmetries (plus some unit stuff), then pulling back along the diagonal endows each with the structure of a commutative monoid in .

*Example.* If , then we can take to consist of all functions , where is the underlying field. If , then is even symmetric monoidal in the sense that the natural transformations above are isomorphisms.

Dually, if is a covariant functor out of (describing a notion of “distributions”) to a symmetric monoidal category which is oplax symmetric monoidal in the sense that it is equipped with natural transformations

compatible with symmetries (plus unit stuff as above), then pushing forward along the diagonal endows each with the structure of a cocommutative comonoid in .

*Example.* If , then we can take to consist of the free -vector space on , where is the underlying field. Without any finiteness hypotheses, this is even symmetric monoidal.

**Sets as coalgebras**

Let’s slightly generalize the construction above. Let be a commutative ring (in fact we could take a commutative semiring here). Then we have a free -module functor from sets to -modules. The above construction shows that this functor can be regarded as taking values in cocommutative coalgebras over , so in fact we have a functor

.

At this point it will be convenient to introduce the following definition.

**Definition:** An element of a coalgebra (where is the comultiplication and is the counit) is *setlike* if and . If is a coalgebra, we’ll write for its set of setlike elements.

(The more common term is *grouplike*, but that term is really only appropriate to the case of Hopf algebras, since in that case the setlike elements form a group. Here the setlike elements only form a set.)

Now we can describe , as a coalgebra, as being freely generated by setlike elements. Thinking in terms of distributions, setlike elements correspond to Dirac distributions, and so it’s reasonable to think of them as the “points” of a coalgebra, or more precisely of a hypothetical space on which the coalgebra is distributions.

**Proposition:** The functor from sets to coalgebras above has a right adjoint sending a coalgebra to its set of setlike elements.

*Proof.* We want to show that if is a set and is a coalgebra, we have a natural bijection

.

But this is clear from the observation that is a free -module on setlike elements, from which it follows that a coalgebra homomorphism is uniquely and freely determined by what it does to each element . These elements must be sent to some setlike element of and can be sent to any such element.

In praticular, the functor is represented by the coalgebra (of “distributions on a point”).

**Lemma: **Suppose has no nontrivial idempotents (that is, it is a connected ring). Then the setlike elements of are precisely the elements : that is, the unit of the above adjunction is an isomorphism.

*Proof.* Suppose is a setlike element. Then

must be equal to

which happens if and only if if and otherwise. The counit condition is

.

Altogether, the condition that is primitive is precisely the condition that the elements are a complete set of orthogonal idempotents in . Since has no nontrivial idempotents by assumption, each is equal to either or . Since they are orthogonal (meaning if ), at most one of them is equal to . And since they sum to , exactly one of them is equal to . Hence our setlike element is some .

The correct statement without the hypothesis that is connected, which is not hard to extract from the above argument, is that the setlike elements of in general correspond to functions from the set of connected components of to with finite image, or equivalently to continuous functions from the Pierce spectrum to .

**Corollary:** Let have no nontrivial idempotents. Then the functor is an equivalence of categories from sets to cocommutative coalgebras over which are free on setlike elements.

In other words, as a slogan, sets are coalgebras of Dirac deltas.

*Proof.* We showed that the unit of the adjunction between sets and coalgebras is an isomorphism on sets. In general, an adjunction restricts to an equivalence of categories between the subcategories on which the unit resp. the counit of the adjunction are isomorphisms. So it remains to determine for which coalgebras the counit of the adjunction is an isomorphism. Explicitly, the counit is the natural map

from the free -module on the setlike elements of a coalgebra to . If this is an isomorphism, then must in particular be free on some setlike elements. Conversely, if is free on setlike elements, then the lemma above shows that naturally, so that is an isomorphism.

This equivalence induces an equivalence between groups and cocommutative Hopf algebras over which are free (as modules) on setlike (here “grouplike”) elements.

**Beyond Dirac deltas**

We’ve said a lot about setlike elements of coalgebras, or equivalently about Dirac delta distributions. But coalgebras have lots of other kinds of elements in general. For example, if is a Lie algebra, its universal enveloping algebra has a natural comultiplication given by extending

where ; that is, each is primitive. In a geometric story about distributions, where do the primitives?

The first observation is that in an arbitrary coalgebra there isn’t an element called , so coalgebras don’t have a notion of primitive element. What makes the element special is that it is in fact the unique setlike element: it satisfies and is the only element of with this property. So whatever primitivity means, geometrically it has something to do with a fixed setlike element, or in distributional terms with a fixed Dirac delta.

**Definition:** Let be a setlike element of a coalgebra . An element is *primitive with respect to* if

and .

We can get a big hint about what this definition means by going back to the example of distributions coming from taking the dual of the space of smooth functions . Consider the distribution

.

How does comultiplication act on this distribution? To answer that question we need to see what this distribution does to a product of functions (since this describes the action of the distribution on at least a dense subspace of the pullback of functions along the diagonal map ). The answer, using the product rule, is that

.

This gives that

and tells us that primitivity is a reflection of the Leibniz rule for derivations: saying that an element is primitive with respect to a setlike element means that if is a “point,” or more precisely a Dirac delta at a point, then is a “directional derivative” in a tangent direction at that point. Similarly, computing the pushforward to a point means differentiating constant functions (which are the functions pulled back from a point), which gives zero.

More formally, we can say the following.

**Theorem:** Let be a setlike element of a cocommutative coalgebra over , and let be an arbitrary element. Then is primitive with respect to iff is a setlike element of .

*Proof.* Computation.

Intuitively, is primitive with respect to iff both and are “points,” where the indicates that they are “infinitesimally close” points.

The fact that , as a Hopf algebra, is generated by primitive elements can be interpreted geometrically as saying that it corresponds to distributions “supported at a point.” In fact it is possible to describe as distributions supported at the identity on a Lie group with Lie algebra .

on March 20, 2016 at 7:55 pm |Coalgebraic geometry | Annoying Precision[…] « Coalgebras of distributions […]

on March 20, 2016 at 9:22 am |sigfpeSometimes I think that algebras are for mathematicians and coalgebras are for computer scientists.