Feeds:
Posts
Comments

Posts Tagged ‘groupoids’

Suitably nice groupoids have a numerical invariant attached to them called groupoid cardinality. Groupoid cardinality is closely related to Euler characteristic and can be thought of as providing a notion of integration on groupoids.

There are various situations in mathematics where computing the size of a set is difficult but where that set has a natural groupoid structure and computing its groupoid cardinality turns out to be easier and give a nicer answer. In such situations the groupoid cardinality is also known as “mass,” e.g. in the Smith-Minkowski-Siegel mass formula for lattices. There are related situations in mathematics where one needs to describe a reasonable probability distribution on some class of objects and groupoid cardinality turns out to give the correct such distribution, e.g. the Cohen-Lenstra heuristics for class groups. We will not discuss these situations, but they should be strong evidence that groupoid cardinality is a natural invariant to consider.

(more…)

Read Full Post »

My current top candidate for a mathematical concept that should be and is not (as far as I can tell) consistently taught at the advanced undergraduate / beginning graduate level is the notion of a groupoid. Today’s post is a very brief introduction to groupoids together with some suggestions for further reading.

(more…)

Read Full Post »

Follow

Get every new post delivered to your Inbox.

Join 316 other followers