Feeds:
Posts
Comments

Posts Tagged ‘absolute colimits’

Previously we observed that although monomorphisms tended to give expected generalizations of injective function in many categories, epimorphisms sometimes weren’t the expected generalization of surjective functions. We also discussed split epimorphisms, but where the definition of an epimorphism is too permissive to agree with the surjective morphisms in familiar concrete categories, the definition of a split epimorphism is too restrictive.

In this post we will discuss two other intermediate notions of epimorphism. (These all give dual notions of monomorphisms, but their epimorphic variants are more interesting as a possible solution to the above problem.) There are yet others, but these two appear to be the most relevant in the context of abelian categories.

(more…)

Read Full Post »

There are various natural questions one can ask about monomorphisms and epimorphisms all of which lead to the same answer:

  • What is the “easiest way” a morphism can be a monomorphism (resp. epimorphism)?
  • What are the absolute monomorphisms (resp. epimorphisms) – that is, the ones which are preserved by every functor?
  • A morphism which is both a monomorphism and an epimorphism is not necessarily an isomorphism. Can we replace either “monomorphism” or “epimorphism” by some other notion to repair this?
  • If we wanted to generalize surjective functions, why didn’t we define an epimorphism to be a map which is surjective on generalized points?

The answer to all of these questions is the notion of a split monomorphism (resp. split epimorphism), which is the subject of today’s post.

(more…)

Read Full Post »

The goal of today’s post is to introduce and discuss semiadditive categories. Roughly speaking, these are categories in which one can add both objects and morphisms. Prominent examples include the abelian categories appearing in homological algebra, such as categories of sheaves and modules and categories of chain complexes.

Semiadditive categories display some interesting categorical features, such as the prominence of pairs of universal properties and the surprising ways in which commutative monoid structures arise, which seem to be underemphasized in textbook treatments and which I would like to emphasize here. I would also like to emphasize that their most important properties are unrelated to the ability to subtract morphisms which is provided in an additive category.

In this post, for convenience all categories will be locally small (that is, \text{Set}-enriched).

(more…)

Read Full Post »

Follow

Get every new post delivered to your Inbox.

Join 282 other followers