In this post we’ll compute the (topological) cohomology of smooth projective (complex) hypersurfaces in . When the resulting complex surfaces give nice examples of 4-manifolds, and we’ll make use of various facts about 4-manifold topology to try to say more in this case; in particular we’ll be able to compute, in a fairly indirect way, the ring structure on cohomology. This answers a question raised by Akhil Mathew in this blog post.

Our route towards this result will turn out to pass through all of the most common types of characteristic classes: we’ll invoke, in order, Euler classes, Chern classes, Pontryagin classes, Wu classes, and Stiefel-Whitney classes.