Feeds:
Posts

## Four flavors of Schur-Weyl duality

If $V$ is a finite-dimensional complex vector space, then the symmetric group $S_n$ naturally acts on the tensor power $V^{\otimes n}$ by permuting the factors. This action of $S_n$ commutes with the action of $\text{GL}(V)$, so all permutations $\sigma : V^{\otimes n} \to V^{\otimes n}$ are morphisms of $\text{GL}(V)$-representations. This defines a morphism $\mathbb{C}[S_n] \to \text{End}_{\text{GL}(V)}(V^{\otimes n})$, and a natural question to ask is whether this map is surjective.

Part of Schur-Weyl duality asserts that the answer is yes. The double commutant theorem plays an important role in the proof and also highlights an important corollary, namely that $V^{\otimes n}$ admits a canonical decomposition

$\displaystyle V^{\otimes n} = \bigoplus_{\lambda} V_{\lambda} \otimes S_{\lambda}$

where $\lambda$ runs over partitions, $V_{\lambda}$ are some irreducible representations of $\text{GL}(V)$, and $S_{\lambda}$ are the Specht modules, which describe all irreducible representations of $S_n$. This gives a fundamental relationship between the representation theories of the general linear and symmetric groups; in particular, the assignment $V \mapsto V_{\lambda}$ can be upgraded to a functor called a Schur functor, generalizing the construction of the exterior and symmetric products.

The proof below is more or less from Etingof’s notes on representation theory (Section 4.18). We will prove four versions of Schur-Weyl duality involving $\mathfrak{gl}(V), \text{GL}(V)$, and (in the special case that $V$ is a complex inner product space) $\mathfrak{u}(V), \text{U}(V)$.

## Noncommutative probability and group theory

There are, roughly speaking, two kinds of algebras that can be functorially constructed from a group $G$. The kind which is covariantly functorial is some variation on the group algebra $k[G]$, which is the free $k$-module on $G$ with multiplication inherited from the multiplication on $G$. The kind which is contravariantly functorial is some variation on the algebra $k^G$ of functions $G \to k$ with pointwise multiplication.

When $k = \mathbb{C}$ and when $G$ is respectively either a discrete group or a compact (Hausdorff) group, both of these algebras can naturally be endowed with the structure of a random algebra. In the case of $\mathbb{C}[G]$, the corresponding state is a noncommutative refinement of Plancherel measure on the irreducible representations of $G$, while in the case of $\mathbb{C}^G$, the corresponding state is by definition integration with respect to normalized Haar measure on $G$.

In general, some nontrivial analysis is necessary to show that the normalized Haar measure exists, but for compact groups equipped with a faithful finite-dimensional unitary representation $V$ it is possible to at least describe integration against Haar measure for a dense subalgebra of the algebra of class functions on $G$ using representation theory. This construction will in some sense explain why the category $\text{Rep}(G)$ of (finite-dimensional continuous unitary) representations of $G$ behaves like an inner product space (with $\text{Hom}(V, W)$ being analogous to the inner product); what it actually behaves like is a random algebra, namely the random algebra of class functions on $G$.

The Artin-Wedderburn theorem shows that the definition of a semisimple ring is enormously restrictive. Even $\mathbb{Z}$ fails to be semisimple! A less restrictive notion, but one that still captures the notion of a ring which can be understood by how it acts on simple (left) modules, is that of a semiprimitive or Jacobson semisimple ring, one with the property that every element $r \in R$ acts nontrivially in some simple (left) module $M$.

Said another way, let the Jacobson radical $J(R)$ of a ring consist of all elements of $r$ which act trivially on every simple module. By definition, this is an intersection of kernels of ring homomorphisms, hence a two-sided ideal. A ring $R$ is then semiprimitive if it has trivial Jacobson radical.

The goal of this post will be to discuss some basic properties of the Jacobson radical. I am again working mostly from Lam’s A first course in noncommutative rings.

## The representation theory of SU(2)

Today we will give four proofs of the classification of the (finite-dimensional complex continuous) irreducible representations of $\text{SU}(2)$ (which you’ll recall we assumed way back in this previous post). As a first step, it turns out that the finite-dimensional representation theory of compact groups looks a lot like the finite-dimensional representation theory of finite groups, and this will be a major boon to three of the proofs. The last proof will instead proceed by classifying irreducible representations of the Lie algebra $\mathfrak{su}(2)$.

At the end of the post we’ll briefly describe what we can conclude from all this about electrons orbiting a hydrogen atom.

## SO(3) and SU(2)

In order to study the hydrogen atom, we’ll need to know something about the representation theory of the special orthogonal group $\text{SO}(3)$. This post consists of a few preliminaries along the way to doing this. I’ll be somewhat vague about a few things that 1) I don’t have much experience with, and 2) that would detract from the main narrative anyway.

## The Schrödinger equation on a finite graph

One of the most important discoveries in the history of science is the structure of the periodic table. This structure is a consequence of how electrons cluster around atomic nuclei and is essentially quantum-mechanical in nature. Most of it (the part not having to do with spin) can be deduced by solving the Schrödinger equation by hand, but it is conceptually cleaner to use the symmetries of the situation and representation theory. Deducing these results using representation theory has the added benefit that it identifies which parts of the situation depend only on symmetry and which parts depend on the particular form of the Hamiltonian. This is nicely explained in Singer’s Linearity, symmetry, and prediction in the hydrogen atom.

For awhile now I’ve been interested in finding a toy model to study the basic structure of the arguments involved, as well as more generally to get a hang for quantum mechanics, while avoiding some of the mathematical difficulties. Today I’d like to describe one such model involving finite graphs, which replaces the infinite-dimensional Hilbert spaces and Lie groups occurring in the analysis of the hydrogen atom with finite-dimensional Hilbert spaces and finite groups. This model will, among other things, allow us to think of representations of finite groups as particles moving around on graphs.

## Lattice paths and the quadratic coefficient of Kazhdan-Lusztig polynomials

SPUR is finally over! Instead of continuing my series of blog posts, I thought I’d just link to my paper, Lattice paths and the quadratic coefficient of Kazhdan-Lusztig polynomials, and the first few blog posts should more or less provide enough background to read it.

My project ended up changing direction. The formula I was working with for the quadratic coefficient was so unwieldy that I ended up spending the whole time trying to simplify it, and instead of saying anything about non-negativity I ended up saying something about combinatorial invariance. The combinatorial invariance conjecture, which goes back to Lusztig and, independently, Dyer, says that the Kazhdan-Lusztig polynomial $P_{u,v}(q)$ depends only on the poset structure of $[u, v]$. In the special case that $u = e$ this was proven in 2006 by Brenti, Caselli, and Marietti. However, the conjecture is still open in general.

In particular, explicit nonrecursive formulas in which each term only depends on poset-theoretic data are not known in general. They are known in the case that the length $\ell(u, v)$ of the interval $[u, v]$ is less than or equal to $4$, and there is also such a formula for the coefficient of $q$ of $P_{e,v}(q)$ where $e$ is the identity. The main result of the paper is a formula for the coefficient of $q^2$ of $P_{u,v}(q)$ in which all but three of the terms depend only on poset data, which is a simplification of a general formula due to Brenti for $P_{u,v}(q)$ in terms of lattice paths. It reduces to

• a formula for the coefficient of $q^2$ of $P_{e,v}(q)$ in which all but one of the terms depends only on poset data,
• a formula for the coefficient of $q^2$ of $P_{u,v}(q)$ where $\ell(u, v) = 5$ in which all but one of the terms (but a different term) depends only on poset data (not in the paper), and
• a formula for the coefficient of $q^2$ of $P_{e,v}(q)$ where $\ell(u, v) = 6$ in which every term depends only on poset data.

I believe these formulas are known in some form, but the method of proof is likely to be novel. In any case, the troublesome terms in the above are all essentially coefficients of R-polynomials. If I revisit this project in the future, I will be focusing my attention on these coefficients, and my goal will be to find a poset-theoretic formula for $P_{u,v}(q)$ in the length $5$ case, the smallest-length case where (to my knowledge) combinatorial invariance is open.

## Hecke algebras and the Kazhdan-Lusztig polynomials

The Hecke algebra attached to a Coxeter system $(W, S)$ is a deformation of the group algebra of $W$ defined as follows. Take the free $\mathbb{Z}[q^{ \frac{1}{2} }, q^{ - \frac{1}{2} }]$-module $\mathcal{H}_W$ with basis $T_w, w \in W$, and impose the multiplicative relations

$T_w T_s = T_{ws}$

if $\ell(sw) > \ell(w)$, and

$T_w T_s = q T_{ws} + (q - 1) T_w$

otherwise. (For now, ignore the square root of $q$.) Humphreys proves that these relations describe a unique associative algebra structure on $\mathcal{H}_W$ with $T_e$ as the identity, but the proof is somewhat unenlightening, so I will skip it. (Actually, the only purpose of this post is to motivate the definition of the Kazhdan-Lusztig polynomials, so I’ll be referencing the proofs in Humphreys rather than giving them.)

The motivation behind this definition is a somewhat long story. When $W$ is the Weyl group of an algebraic group $G$ with Borel subgroup $B$, the above relations describe the algebra of functions on $G(\mathbb{F}_q)$ which are bi-invariant with respect to the left and right actions of $B(\mathbb{F}_q)$ under a convolution product. The representation theory of the Hecke algebra is an important tool in understanding the representation theory of the group $G$, and more general Hecke algebras play a similar role; see, for example MO question #4547 and this Secret Blogging Seminar post. For example, replacing $G$ and $B$ with $\text{SL}_2(\mathbb{Q})$ and $\text{SL}_2(\mathbb{Z})$ gives the Hecke operators in the theory of modular forms.

## Coxeter groups

At SPUR this summer I’ll be working on the Kazhdan-Lusztig polynomials, although my mentor and I haven’t quite pinned down what problem I’m working on. I thought I’d take the chance to share some interesting mathematics and also to write up some background for my own benefit. I’ll mostly be following the second half of Humphreys.

A Coxeter system $(W, S)$ is a group $W$ together with a generating set $S$ and presentation of the form

$\langle s_1, ... s_n | (s_i s_j)^{m(i, j)} = 1 \rangle$

where $m(i, j) = m(j, i), m(i, i) = 1$, and $m(i, j) \ge 2, i \neq j$. (When there is no relation between $s_i, s_j$, we write this as $m(i, j) = \infty$.) The group $W$ is a Coxeter group, and is usually understood to come with a preferred presentation, so we will often abuse terminology and use “group” and “system” interchangeably. $S$ is also referred to as the set of simple reflections in $W$, and $n$ the rank. (We will only consider finitely-generated Coxeter groups.)

Historically, Coxeter groups arose as symmetry groups of regular polytopes and as Weyl groups associated to root systems, which in turn are associated to Lie groups, Lie algebras, and/or algebraic groups; the former are very important in understanding the latter. John Armstrong over at the Unapologetic Mathematician has a series on root systems. In addition, for a non-technical overview of Coxeter groups and $q$-analogues, I recommend John Baez’s week184 through week187. The slogan you should remember is that Weyl groups are “simple algebraic groups over $\mathbb{F}_1$.”

## The McKay correspondence I

Today we’re going to relate the representation graphs introduced in this blog post to something I blogged about in the very first and second posts in this blog! The result will be a beautiful connection between the finite subgroups of $\text{SU}(2)$, the Platonic solids, and the ADE Dynkin diagrams. This connection has been written about in several other places on the internet, for example here, but I don’t know that any of those places have actually gone through the proof of the big theorem below, which I’d like to (as much for myself as for anyone else who is reading this).

Let $G$ be a finite subgroup of $\text{SL}_2(\mathbb{C})$. Since any inner product on $\mathbb{C}^2$ can be averaged to a $G$-invariant inner product, every finite subgroup of $\text{SL}_2(\mathbb{C})$ is conjugate to a finite subgroup of $\text{SU}(2)$, so we’ll suppose this without loss of generality. The two-dimensional representation $V$ of $G$ coming from this description is therefore faithful and self-dual. Consider the representation graph $\Gamma(V)$, whose vertices are the irreducible representations of $G$ and where the number of edges between $V_i$ and $V_j$ is the multiplicity of $V_j$ in $V_i \otimes V$. We will see that $\Gamma(V)$ is a connected undirected loopless graph whose spectral radius $\lambda(\Gamma(V))$ is $2$. Today our goal is to prove the following.

Theorem: The connected undirected loopless graphs of spectral radius $2$ are precisely the affine Dynkin diagrams $\tilde{A}_n, \tilde{D}_n, \tilde{E}_6, \tilde{E}_7, \tilde{E}_8$.

We’ll describe these graphs later; for now, just keep in mind that they are graphs with a number of vertices which is one greater than their subscript. In a later post we’ll see how these give us a classification of the Platonic solids, and we’ll also discuss other connections.