Feeds:
Posts
Comments

Archive for the ‘abstract algebra’ Category

The goal of this post is to collect a list of applications of the following theorem, which is perhaps the simplest example of a fixed point theorem.

Theorem: Let G be a finite p-group acting on a finite set X. Let X^G denote the subset of X consisting of those elements fixed by G. Then |X^G| \equiv |X| \bmod p; in particular, if p \nmid |X| then G has a fixed point.

Although this theorem is an elementary exercise, it has a surprising number of fundamental corollaries.

(more…)

Read Full Post »

Previously we looked at several examples of n-ary operations on concrete categories (C, U). In every example except two, U was a representable functor and C had finite coproducts, which made determining the n-ary operations straightforward using the Yoneda lemma. The two examples where U was not representable were commutative Banach algebras and commutative C*-algebras, and it is possible to construct many others. Without representability we can’t apply the Yoneda lemma, so it’s unclear how to determine the operations in these cases.

However, for both commutative Banach algebras and commutative C*-algebras, and in many other cases, there is a sense in which a sequence of objects approximates what the representing object of U “ought” to be, except that it does not quite exist in the category C itself. These objects will turn out to define a pro-object in C, and when U is pro-representable in the sense that it’s described by a pro-object, we’ll attempt to describe n-ary operations U^n \to U in terms of the pro-representing object.

The machinery developed here is relevant to understanding Grothendieck’s version of Galois theory, which among other things leads to the notion of étale fundamental group; we will briefly discuss this.

(more…)

Read Full Post »

Previously we described n-ary operations on (the underlying sets of the objects of) a concrete category (C, U), which we defined as the natural transformations U^n \to U.

Puzzle: What are the n-ary operations on finite groups?

Note that U is not representable here. The next post will answer this question, but for those who don’t already know the answer it should make a nice puzzle.

Read Full Post »

A common theme in mathematics is to replace the study of an object with the study of some category that can be built from that object. For example, we can

  • replace the study of a group G with the study of its category G\text{-Rep} of linear representations,
  • replace the study of a ring R with the study of its category R\text{-Mod} of R-modules,
  • replace the study of a topological space X with the study of its category \text{Sh}(X) of sheaves,

and so forth. A general question to ask about this setup is whether or to what extent we can recover the original object from the category. For example, if G is a finite group, then as a category, the only data that can be recovered from G\text{-Rep} is the number of conjugacy classes of G, which is not much information about G. We get considerably more data if we also have the monoidal structure on G\text{-Rep}, which gives us the character table of G (but contains a little more data than that, e.g. in the associators), but this is still not a complete invariant of G. It turns out that to recover G we need the symmetric monoidal structure on G\text{-Rep}; this is a simple form of Tannaka reconstruction.

Today we will prove an even simpler reconstruction theorem.

Theorem: A group G can be recovered from its category G\text{-Set} of G-sets.

(more…)

Read Full Post »

If V is a finite-dimensional complex vector space, then the symmetric group S_n naturally acts on the tensor power V^{\otimes n} by permuting the factors. This action of S_n commutes with the action of \text{GL}(V), so all permutations \sigma : V^{\otimes n} \to V^{\otimes n} are morphisms of \text{GL}(V)-representations. This defines a morphism \mathbb{C}[S_n] \to \text{End}_{\text{GL}(V)}(V^{\otimes n}), and a natural question to ask is whether this map is surjective.

Part of Schur-Weyl duality asserts that the answer is yes. The double commutant theorem plays an important role in the proof and also highlights an important corollary, namely that V^{\otimes n} admits a canonical decomposition

\displaystyle V^{\otimes n} = \bigoplus_{\lambda} V_{\lambda} \otimes S_{\lambda}

where \lambda runs over partitions, V_{\lambda} are some irreducible representations of \text{GL}(V), and S_{\lambda} are the Specht modules, which describe all irreducible representations of S_n. This gives a fundamental relationship between the representation theories of the general linear and symmetric groups; in particular, the assignment V \mapsto V_{\lambda} can be upgraded to a functor called a Schur functor, generalizing the construction of the exterior and symmetric products.

The proof below is more or less from Etingof’s notes on representation theory (Section 4.18). We will prove four versions of Schur-Weyl duality involving \mathfrak{gl}(V), \text{GL}(V), and (in the special case that V is a complex inner product space) \mathfrak{u}(V), \text{U}(V).

(more…)

Read Full Post »

Previously we introduced string diagrams and saw that they were a convenient way to talk about tensor products, partial compositions of multilinear maps, and symmetries. But string diagrams really prove their use when augmented to talk about duality, which will be described topologically by bending input and output wires. In particular, we will be able to see topologically the sense in which the following four pieces of information are equivalent:

  • A linear map U \to V,
  • A linear map U \otimes V^{\ast} \to 1,
  • A linear map V^{\ast} \to U^{\ast},
  • A linear map 1 \to U^{\ast} \otimes V^{\ast}.

Using string diagrams we will also give a diagrammatic definition of the trace \text{tr}(f) of an endomorphism f : V \to V of a finite-dimensional vector space, as well as a diagrammatic proof of some of its basic properties.

Below all vector spaces are finite-dimensional and the composition convention from the previous post is still in effect.

(more…)

Read Full Post »

Today I would like to introduce a diagrammatic notation for dealing with tensor products and multilinear map. The basic idea for this notation appears to be due to Penrose. It has the advantage of both being widely applicable and easier and more intuitive to work with; roughly speaking, computations are performed by topological manipulations on diagrams, revealing the natural notation to use here is 2-dimensional (living in a plane) rather than 1-dimensional (living on a line).

For the sake of accessibility we will restrict our attention to vector spaces. There are category-theoretic things happening in this post but we will not point them out explicitly. We assume familiarity with the notion of tensor product of vector spaces but not much else.

Below the composition of a map f : a \to b with a map g : b \to c will be denoted f \circ g : a \to c (rather than the more typical g \circ f). This will make it easier to translate between diagrams and non-diagrams. All diagrams were drawn in Paper.

(more…)

Read Full Post »

(This post was originally intended to go up immediately after the sequence on Gelfand duality.)

A rng (“ring without the i”) or non-unital ring is a semigroup object in \text{Ab}. Equivalently, it is an abelian group A together with an associative bilinear map m : A \otimes A \to A (which is not required to have an identity). This is what some authors mean when they say “ring,” but this does not appear to be standard. A morphism between rngs is an abelian group homomorphism which preserves multiplication (and need not preserve a multiplicative identity even if it exists); this defines the category \text{Rng} of rngs (to be distinguished from the category \text{Ring} of rings).

Until recently, I was not comfortable with non-unital rings. If we think of rings either algebraically as endomorphisms of abelian groups or geometrically as rings of functions on spaces, then there does not seem to be any reason to exclude the identity endomorphism resp. the identity function on a space. As for morphisms which don’t preserve identities, if X \to Y is any map between spaces of some kind, then the identity function Y \to F (F is, say, a field) is sent to the identity function X \to F, so not preserving identities when they exist seems unnatural.

However, not requiring or preserving identities turns out to be natural in the theory of C*-algebras; in the commutative case, it corresponds roughly to thinking about locally compact Hausdorff spaces rather than just compact Hausdorff spaces. In this post we will discuss rngs generally, including a discussion of the geometric picture of commutative rngs, to get more comfortable with them. It turns out that we can study rngs by formally adjoining multiplicative identities to them. This is an algebraic version of taking the one-point compactification, and it allows us to extend Gelfand duality, in a suitable sense, to locally compact Hausdorff spaces (see this math.SE question for the precise statement, which we will not discuss here).

(more…)

Read Full Post »

Previously we observed that although monomorphisms tended to give expected generalizations of injective function in many categories, epimorphisms sometimes weren’t the expected generalization of surjective functions. We also discussed split epimorphisms, but where the definition of an epimorphism is too permissive to agree with the surjective morphisms in familiar concrete categories, the definition of a split epimorphism is too restrictive.

In this post we will discuss two other intermediate notions of epimorphism. (These all give dual notions of monomorphisms, but their epimorphic variants are more interesting as a possible solution to the above problem.) There are yet others, but these two appear to be the most relevant in the context of abelian categories.

(more…)

Read Full Post »

My current top candidate for a mathematical concept that should be and is not (as far as I can tell) consistently taught at the advanced undergraduate / beginning graduate level is the notion of a groupoid. Today’s post is a very brief introduction to groupoids together with some suggestions for further reading.

(more…)

Read Full Post »

Older Posts »

Follow

Get every new post delivered to your Inbox.

Join 308 other followers